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Evolution of flat-plate wakes in sink flow has been studied both analytically and
experimentally. For such wakes, a similarity solution is derived which considers
simultaneous presence of both laminar and turbulent stresses inside the wake. This
solution utilizes an additional Reynolds-stress term which represents the fluctuations
similar to those in wall-bounded flows, accounting for the fluctuations originating
from the plate boundary layer. In this solution, it is shown that the total stress, the
sum of laminar and Reynolds shear stresses, becomes self-similar. To investigate the
accuracy of the analytical results, the wake of a flat plate located at the centreline of a
planar contraction is studied using hot-wire anemometry. Wakes of both tapered and
blunt edges are considered. The length of the plates and the flow acceleration number
K = 6.25 × 10−6 are chosen such that the boundary-layer profiles at the plate edge
approach the self-similar laminar solution of Pohlhausen (Z. Angew. Math. Mech.,
vol. 1, 1921, p. 252). A short plate in which the boundary layer at the edge does
not fully relaminarize is also considered. The development of the turbulent diffusivity
used in the analysis is determined empirically for each experimental case. We have
shown that the obtained similarity solutions, accounting also for the initial conditions
in each case, generally agree well with the experimental results even in the near field.
The results also show that the mean velocity of the transitional wake behind a tapered
edge becomes self-similar almost immediately downstream of the edge.

1. Introduction
Although many aspects of sink flow have been studied in the literature (e.g.

Pohlhausen 1921; Jones & Launder 1972; Sreenivasan 1982; Spalart 1986; Jones,
Marusic & Perry 2001; Parsheh, Brown & Aidun 2005; Brown, Parsheh & Aidun
2006) evolution, influence of initial conditions on wake development and self-similarity
of wakes in sink flow have not been thoroughly studied thus far. In addition to the
fundamental importance of wakes in sink flow, they can also be found in a wide
range of engineering applications, such as in the paper-manufacturing process. Can a
flat-plate wake originating from a relaminarized boundary layer in sink flow become
self-similar? What is the effect of the degree of boundary layer relaminarization on
the wake evolution? Do such wakes become fully turbulent? The width of wakes in
sink flow approaches zero at the sink; however, its evolution towards zero has not
been determined thus far. What is the rate of decay of the velocity defect? This paper
is devoted to investigating these issues.
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Substantial changes in the characteristics of wakes in straining flows have been
reported in the literature (e.g. Elliott & Townsend 1981; Rogers 2002, 2005). In
addition, aspects of wakes subjected to pressure gradients such as similarity state
(Reynolds 1962; Keffer 1965; Narasimha & Prabhu 1972; Prabhu & Narasimha
1972; Ghosal & Rogers 1997; Moser, Rogers & Ewing 1998) and wake characteristics
(Elsner & Wilczynski 1976) have been subjects of extensive investigations. Elsner &
Wilczynski (1976) analytically and experimentally showed that a favourable pressure
gradient accelerates the decay of the velocity defect, damps the turbulent fluctuations
and makes the turbulence isotropic. As a result, the evolution of wake width is
affected by the free-stream pressure gradients. It is well known that the width of
wakes subjected to a favourable pressure gradient decreases downstream, whereas
with an adverse pressure gradient it can exhibit a considerable growth rate (Gartshore
1967). A large adverse pressure gradient can cause local flow reversal or even wake
burst (Hoffenberg, Sullivan & Schneider 1995). Hunt & Eames (2002) analytically
studied evolution of wakes subjected to a constant mean rate of strain and found
that the vorticity in the wake cannot interact with the external flow and, thus, diffuses
inside the wake. Subsequently, the vorticity decays rapidly due to its opposite sign at
different sides of the wake centreline.

Traditional self-similar theories for shear layers are derived such that the solutions,
valid for the flow in the far field, are not explicitly functions of the initial conditions.
Narasimha (1989) put forward as one of the five hypotheses for turbulent flows
that such flows evolve asymptotically to a state independent of all details of their
generation in spite of strong dependence in the near field. Narasimha (1989) further
argues that these working rules are valid under certain conditions, and in some
particular flows they can be violated. The concept of equilibrium similarity for a
turbulent shear flow is defined by Narasimha & Prabhu (1972), following the ideas
of Townsend (1956). A turbulent flow is considered to be in equilibrium if the
mean velocity and turbulent stresses exhibit similarity with scales which develop
downstream in essentially the same way. George (1995) generalized the concept
of equilibrium similarity and argued that the velocity and turbulent-stress scales
do not need to develop in the same way. Self-similarity may be sustained in the
averaged momentum equation without this assumption. Equilibrium is then restricted
to solutions for which the scaled similarity distributions for mean velocity and
Reynolds stresses are independent of initial conditions, a necessary condition also in
the original classical definition. However, the velocity and length scales may still be
dependent on initial conditions. In fact, George (1989, 1995) suggests that a turbulent
flow can asymptotically depend on the initial conditions even far downstream of
its origination, and equilibrium similarity theory can account for this asymptotic
flow behaviour – see, for example, Johansson, George & Gourlay (2003). George
& Davidson (2004) have provided a thorough discussion regarding the role of the
initial conditions in asymptotic turbulent-flow behaviour as well as in equilibrium
solutions. In the present study, we basically follow the generalized definition of
equilibrium similarity by George & Davidson (2004). However, our experiments in
the transitional regime show that the sum of the scaled laminar- and turbulent-stress
distributions become self-similar, rather than the turbulent-stress distribution alone.
Therefore, the definition of equilibrium similarity is slightly expanded to include also
flows with considerable laminar stress. In addition, our experiments show that the
development of the velocity, length and stress scales of wakes originating from a
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relaminarized boundary layer in sink flow are asymptomatically dependent on the
initial conditions.

Details of the approach to the equilibrium condition for sink-flow flat-plate wakes is
unknown, although that of many other types of wakes subjected to pressure gradients
has been examined. For example, Prabhu & Narasimha (1972) showed that for a wake
behind a cylinder subjected to continuous favourable pressure gradient, the approach
to the classical Townsend (1956) equilibrium condition is quite slow, and the wake
develops into temporary equilibrium conditions which change with time. In addition,
Narasimha & Prabhu (1972) showed that a wake behind a tapered edge subjected to
an impulsive favourable pressure gradient undergoes a slow relaxation process before
reaching final equilibrium. However in the absence of pressure gradients, Narasimha
& Prabhu (1972) showed that a wake behind a tapered trailing edge approaches
equilibrium condition quite fast, whereas for a wake behind a cylinder it takes much
longer time.

Narasimha & Prabhu (1972) derived a general self-similar solution for wakes
subjected to arbitrary pressure gradients. Rogers (2002) conducted a comprehensive
self-similarity analysis for wakes subjected to time-varying mean rates of strain with
the mean external velocity changing as a power law and m as the scaling exponent. In
this novel study, Rogers (2002) derived self-similar solutions for the functional forms
of rates of strain for which self-similarity states exist. Based on this analysis, when
m = −1 the resulting self-similar solution corresponds to the flow in the vicinity of
the centreline of planar contractions.

In the present paper, we study the rapid approach of sink flow wakes towards the
equilibrium conditions, in the sense of George & Davidson (2004). To do that, a more
general equilibrium similarity solution is derived, as briefly discussed previously, in
which we study the simultaneous presence of both laminar and turbulent stresses.
This is of interest, since the boundary layer at the plate relaminarizes at sufficiently
large acceleration numbers. Thus, the evolution of the wakes behind the tapered
trailing edges are transitional. Only in one flow case, using a blunt trailing edge, the
flow develops into a fully turbulent wake flow. We also display the dependence of the
wake development on the initial conditions, as imposed by different flow cases. This is
manifested primarily by an empirically determined turbulent diffusivity characterizing
each flow case and also by the explicit application of initial conditions for quantities
such as the momentum flux integral of the velocity defect and wake thickness. The
derived equilibrium solutions are obtained in a cylindrical coordinate system such
that the solution remains valid everywhere inside the planar contraction.

It is well known that relaminarized boundary layers are characterized by velocity
fluctuations which do not affect the velocity profiles and even can be considered frozen
(see e.g. Narasimha & Sreenivasan 1973, 1979; Talamelli et al. 2002). Subsanchandar
& Prabhu (1998) showed that the near wakes of flat plates contain footprints of
the upcoming boundary layer. Therefore, it is of particular interest to examine the
effect of the fluctuations from the upcoming relaminarized boundary layers. In the
experiments, a fully turbulent boundary layer along a flat plate in a contraction
relaminarizes at the trailing edge. Possible footprints of the velocity fluctuations in
the boundary layers of the plate are accounted for by using a more general assumption
for the Reynolds-stress model in the wake than the standard one which considers a
constant turbulent diffusivity. This increases the degree of freedom in the model for
the shape of the velocity-defect profile.
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Figure 1. The schematic of the experimental set-up. The plate configuration corresponds to
case I, and all dimensions are in mm.

2. The experiments
The experiments are carried out in a small wind tunnel in which the test section is

replaced by a planar contraction with two constant cross-section channels attached
to its inlet and outlet, shown in figure 1. Both the upper and lower walls of the
test section are made of single pieces of 12 mm thick Plexiglas. The intersections
of the contraction and the straight channels are formed by grooving each sheet to
make 20 mm wide lines of thin material at two positions and bending the thinned
sections into the specified angles. Therefore, flow separation at these intersections is
prevented, which is verified by visualizing the flow using tufts. The measured velocity
profiles across the channel cross-section at these regions showed that there were no
sudden changes in the velocity field. Through a 20 mm wide streamwise slit at the
upper wall, the measurement equipment enters the test section. The vertical traversing
is performed using a micrometre with a resolution of 5 μm. The measurement
equipment is traversed in the streamwise direction, using a linear traversing system.
The contraction half-angle β is 8.9◦, and the ratio of the outlet to inlet height is C = 10.

In order to generate a turbulent boundary layer at the contraction inlet, free-
stream turbulence is produced by a grid (figure 1). The grid is of the form of biplane
square-mesh arrays of square bars. The mesh size and bar diameter are 34 and 6
mm, respectively, resulting in a solidity of 0.32. To generate homogeneous, isotropic
turbulence at the contraction inlet, the grid is placed 20 mesh size upstream of the
inlet.

The velocity is measured using constant-temperature hot-wire anemometry (CTA).
The diameter and length of the wires are 5 μm and 1.25 mm, respectively. The hot
wires operate at 45 % overheat and are calibrated using a Pitot tube in the constant
height channel. Wakes behind a blunt and a tapered edge are measured. For both
edges, a 5.5 mm thick plate is placed at the contraction centreline. The tapered edge
is provided by tapering the plate edge. The tapered half-angle and length are 4.1◦

and 35 mm, respectively. The effective thickness of the plate at the edge is 0.5 mm.
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Case r1 (mm) Rc I1 (m2 s−2) b m
√

ReΦw,1 Edge type

I 395 0.40 0.260 35 70 2.24 Blunt
II 395 0.40 0.132 0.20 28 1.24 Tapered
III 295 0.54 0.244 0.15 9.0 1.40 Tapered
IV 245 0.64 0.354 0.10 6.5 1.36 Tapered
V 205 0.76 0.524 0.06 4.5 1.44 Tapered

Table 1. Summary of the experimental cases: Rc = rc/r1 is the position of the contraction
outlet, where r1 and rc denote the distances from the origin of the cylindrical coordinate system
to the plate trailing edge and the contraction outlet, respectively; I1 and Φw,1 denote estimated
values at the edge, respectively; and b and m are the coefficient of the line fitted to ν̃T (R) (see
(4.1)); in all cases Re = 160×103, and the Launder acceleration factor K = 1/Re = 6.25×10−6.
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Figure 2. Scaled schematic of the experimental set-up and the coordinate system. Plate
configuration corresponds to case IV.

In our analyses, we have used a cylindrical coordinate system (r , φ, z) located at
the sink pointing against the flow direction as shown in figure 2. The corresponding
velocity components are (Ur + ur , Uφ + uφ , Uz + uz), where the upper and lower cases
denote the mean and fluctuating velocity components, respectively. In table 1, the
experimental cases covered in this study are summarized.

3. Evolution of flat-plate wakes in sink flow
We are interested in deriving a general solution which is valid everywhere in a sink

flow. Therefore, we have used a cylindrical coordinate system (r, φ, z) located at
the sink to cover the flow in the entire contraction. The external undisturbed mean-
velocity components outside the wake and the boundary layer of a thin flat plate
become U E = (Ue

r = −Q/2βr, Ue
φ = 0, Ue

z = 0), where Q denotes the flow rate per
unit width. The Reynolds number defined as Re = −Ue

r r/ν = Q/2βν is independent
of r , where ν is the kinematic viscosity. For large Re, Ue

r is, to the lowest order,
also the external-flow velocity component of thin wakes. Applying boundary-layer
approximations, the momentum and continuity equations for the wake become

Ur

∂Ur

∂r
+

Uφ

r

∂Ur

∂φ
− Ue

r

dUe
r

dr
=

1

r

∂

∂φ

[
ν

r

∂Ur

∂φ
− uruφ

]
, (3.1)

1

r

∂

∂r
(rUr ) +

1

r

∂Uφ

∂φ
= 0, (3.2)

respectively, where Ur = Ue
r + Uw is the wake velocity and Uw is the wake-velocity

defect, and in shallow wakes Uw � |Ue
r |.
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Let us consider a control volume which starts from the position r , extends upstream
to infinity and lies between the two angles ±�φ, where �φ is large enough to enclose
the wake. For small �φ, the momentum balance is given by∫ �φ

0

rρUr
2dφ −

∫ ∞

r

ρUe
r Uφdr = −D

2
+

∫ �φ

0

rρUe
r

2dφ, (3.3)

where D is the drag on the plate. Using (3.2), we can derive an expression for Uφ ,
which is used to derive the following relationship for the second term on the left-hand
side of (3.3):∫ ∞

r

ρUe
r

d

dr

[
r

∫ �φ

0

(
Ue

r − Ur

)
dφ

]
dr = rρUe

r

∫ �φ

0

(
Ue

r − Ur

)
dφ

]∞

r

−
∫ ∞

r

ρUe
r

∫ �φ

0

(
Ue

r − Ur

)
dφdr. (3.4)

Considering the displacement and momentum loss angles, defined as

Φd(r) =

∫ ∞

0

(
1 − Ur

Ue
r

)
dφ; Φm(r) =

∫ ∞

0

Ur

Ue
r

(
1 − Ur

Ue
r

)
dφ, (3.5)

respectively, and defining I ≡ Φd(r)U
e
r

2, (3.4) reduces to

D
2

= ρrI(r) − rρ

∫ ∞

0

U 2
wdφ + ρ

∫ ∞

r

Idr. (3.6)

Differentiating (3.6) with respect to r and setting dD/dr = 0 gives

d

dr
[rI(r)] − d

dr

(
r

∫ ∞

0

U 2
wdφ

)
= I(r). (3.7)

For a shallow wake, the second term on the left-hand side of (3.7) is a factor of
Uw/Ue

r smaller than the other two terms, and thus, d(rI) /dr = I. This implies that
I which can also be formulated as

I ≡ −
∫ ∞

0

Ue
r Uwdφ = I0, (3.8)

is constant to the lowest order in shallow wakes. Since D is independent of r , (3.6)
can be evaluated at r = 0 to derive a relationship between I(r) and the drag.

Conducting a scale analysis, we determine the order of magnitude of the terms
on the left-hand side of (3.1) in terms of r1, β , Uw and Ue

r , where r1 is the distance
from the sink to the trailing edge, (see figure 2). Considering a shallow wake, after
neglecting quadratic terms in Uw , (3.1) becomes

∂

∂r

(
Ue

r Uw

)
=

1

r

∂

∂φ

(
ν

r

∂Uw

∂φ
− uruφ

)
. (3.9)

We seek similarity solutions to (3.9) of the form

Uw = Uc
wf (η), η =

φ

ζ (r)
, (3.10)

where Uc
w(r) and ζ (r) are Uw at the centreline and the wake angular scale, respectively.

We define the wake’s integral angular scale as

Φw(r) ≡ 1

Uc
w

∫ ∞

0

Uwdφ = ζ (r)

∫ ∞

0

f (η)dη. (3.11)
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Without loss of generality we set
∫ ∞

0
f (η)dη = 1 which leads to Φw(r) = ζ (r) and

η(r, φ) = φ/Φw(r). Applying (3.10) to (3.8) results in Uc
w(r)Φw(r) = 2βrI0/Q =

−I0/U
e
r .

In the following analysis, we consider that laminar and turbulent stresses are
simultaneously present and uruφ consists of two parts given by

−uruφ = κ1(r)rΦwUc
w(r)

1

r

∂Uw

∂φ
+ κ2(r)

(rφ)2

rΦw

Uc
w(r)

1

r

∂Uw

∂φ
, (3.12)

where κ1(r) and κ2(r) are the scaling parameters for the terms corresponding to the
mixing lengths typical for free shear layers and wall-bounded flows, respectively. This
means that in addition to the turbulent fluctuations represented on average by the
first term on the right-hand side of (3.12), we assume that other turbulent wake
disturbances, for which uφ = 0 at φ = 0, exist as well. The second term will add
a degree of freedom to control the shape of the similarity profile. Unlike for fully
turbulent wake flows in which the scaling parameter for mixing lengths is usually
considered a constant, κ1(r) and κ2(r) are empirical functions of r . This means
that the turbulence level can increase downstream. We note that the terms in (3.12)
represent the simplest possible mixing-length models available. A more comprehensive
model would take the eddy diffusivity proportional to the magnitude of local velocity
gradient. Here, the velocity gradient is estimated by the ratio Uc

w/(rΦw). As a result,
the effective eddy diffusivity of the second term will not be finite as φ increases. It
is possible to implement the local magnitude of the velocity gradient in the eddy
diffusivity, but it does not allow closed-form solutions, as the resulting equation is
nonlinear. Therefore, we rather adhere to the simplicity of (3.12), keeping in mind
the inaccuracy of the model for large values of φ. Considering (3.10) and η, we can
rewrite (3.12) as

−uruφ = Uc
w

2(κ1(r) + κ2(r)η
2)

df

dη
, (3.13)

where f is the similarity function for transitional wakes that we seek to derive. Let
us define non-dimensional laminar and turbulent stresses as

τ̃L =
(ν/r) (∂Uw/∂φ)

νUc
w/rΦw

=
df

dη
, τ̃T = (κ1 + κ2η

2)
ReI0

Ue
r

2

df

dη
, (3.14)

respectively. We then introduce the non-dimensional turbulent-diffusivity coefficients
ν̃T and ξ̃T which are unknown functions of r , as ν̃T (r) = ReI0κ1(r)/U

e
r

2 and ξ̃T (r) =
ReI0κ2(r)/U

e
r

2, respectively, where both are O(1) in transitional wakes.
We consider cases in which the initial turbulent and laminar stresses are of the

same order of magnitude, and therefore, the non-dimensional total stress τ̃s can be
formulated as

τ̃s =
(ν/r) (∂Uw/∂φ) − uruφ

νUc
w/rΦw

= (1 + ν̃T (r) + ξ̃T (r)η2)
df

dη
. (3.15)

Inserting (3.13) into (3.9) and using the definitions of ν̃T (r) and ξ̃T (r) given above, we
can show

RΦΦ ′ d(ηf )

dη
=

d[(1 + ν̃T (R) + ξ̃T (R)η2)df/dη]

dη
, (3.16)

where Φw = Φ/
√

Re, R ≡ r/r1, and the ‘prime’ denotes differentiation with respect
to R. In order that similarity solutions exist, we require that the total stress has a
self-similar shape. Thus, from (3.15), ξ̃T (R) = γ 2[1 + ν̃T (R)], where γ is an empirical
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constant dependent only on Re. Therefore, ν̃T (R) and ξ̃T (R) are not independent
functions if similarity prevails. As a result, the final condition for self-similarity reads

RΦΦ ′ = −α2 [1 + ν̃T (R)] . (3.17)

The general solution for the wake angular scale becomes

Φ(R) =

√
(Φ1)

2 + 2α2

[
ln

(
1

R

)
+

∫ 1

R

ν̃T (R)

R
dR

]
, (3.18)

where α2 is determined based on the normalization condition and Φ1 is the initial
angular scale. The solution to (3.16) becomes

f = (1 + γ 2η2)−α2/2γ 2

, (3.19)

which represents a whole class of similarity solutions using different values of
the free parameter γ . If γ is independent of initial conditions, f represents an
equilibrium similarity solution in the generalized sense described previously. Whether
γ is dependent on initial conditions or not, we cannot derive γ from the present
analysis. Thus, it can only be determined from the experiments. In the limit when
γ → 0 (and using the normalization condition

∫ ∞
0

f dη = 1) (3.19) reduces to the

Gaussian f0 = e−πη2/4 with α2 = π/2. This limit covers also the laminar case for which
γ = 0 and ν̃T = 0. Equation (3.16) then simplifies to RΦLΦ ′

L = −α2 = −π/2, and
thus, the wake angular scale becomes

ΦL =

√
Φ2

L,1 + πln

(
1

R

)
. (3.20)

If the wake half-width is defined as δ = rΦw , the non-dimensional half-width can
be presented as

δ∗ =
δ

r1Re−1/2
= R

√
(Φ1)

2 + 2α2

[
ln

(
1

R

)
+

∫ 1

R

ν̃T (R)

R
dR

]
. (3.21)

Equation (3.21) shows that the evolution of wake half-width is dependent on its
initial value, Φ1 = δ1/(r1Re−1/2). The relative importance of the initial value decreases
slowly downstream as δ approaches zero. This is shown in figure 3 in which the non-
dimensional wake half-width with different initial values is presented for the laminar
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case. When ΦL,1 < ΦL,c(≡
√

π/2) the wake half-width first increases to a peak and
thereafter decreases towards zero at the sink, whereas if ΦL,1 > ΦL,c, δ∗

L decreases
monotonically downstream. Thus, the wake width increases if the wake angular scale
is smaller than a threshold, whereas if the angular scale is sufficiently large it decreases.
Since the wake angular scale increases monotonically downstream, initially thin wakes
exhibit a peak in the wake width. Physically this can be described by the balance
of the forces in the shallow wake, representing the small departure from the inviscid
balance in the converging flow. When the wake angular scale is large, viscous and
counterbalancing inertial forces are small, and accordingly the wake angle growth
rate is weak. Therefore, the wake width follows qualitatively the inviscid streamlines
of the converging flow. When the wake angular scale is small, viscous forces are
much larger, thus requiring a significant wake-angle growth rate to maintain the
balance with the inertial force. As a result, the wake width increases downstream. In
a consistent manner, Prabhu, Narasimha & Sreenivasan (1974) observed that wakes
subjected to a large favourable pressure gradient follow ideal-fluid solutions, and the
wake width decreases downstream. The evolution of the wake half-width depicted in
figure 3 and discussions presented above in principle also carry over to the turbulent
case.

For our general case the scaled non-dimensional total stress is given by

τ ∗
s =

τ̃s

[1 + ν̃T (R)]
= (1 + γ 2η2)

df

dη
, (3.22)

suggesting that τ ∗
s has a universal shape, provided that γ is independent of initial

conditions. Indeed, comparisons with our experiments, presented in § 4, show that
γ can be considered constant, independent of the various initial conditions covered
in this study. Thus, the shape of the self-similar profiles for the wake velocity
and total stress are universally independent of the initial conditions, and only the
magnitudes of the scaling parameters Uc

w(R) and νUc
w(R)[1 + ν̃T (R)]/rΦw(R) depend

on R. These functions of R are highly dependent on the initial conditions. This will
be clarified below from the procedure for determining the scale factor [1 + ν̃T (R)] =
1 + ReI0κ1(R)/Ue

r
2, which is basically based on finding the best agreement between

(3.22) and the total-stress profiles of experiments with different initial conditions.
Therefore, we may consider this similarity solution as an equilibrium solution in
analogy with the generalized definition of equilibrium shear flows defined by George
(1995). However, it should be noted that the derived equilibrium solution in this study
is slightly different to the defined equilibrium solution by George (1995), as here the
total stress profile, instead of the Reynolds shear stress, is self-similar.

Since τ̃T = τ̃s − df/dη, we can show that the scaled Reynolds stress τ ∗
T becomes

τ ∗
T =

τ̃T

[1 + ν̃T (R)]
= γ 2η2 df

dη
+

ν̃T (R)

[1 + ν̃T (R)]

df

dη
. (3.23)

Therefore, there is no scaling factor that generally makes the shape of the Reynolds-
stress profile independent of R. For tapered edges, we will have ν̃T (R ≈ 1) � 1, which
gives

τ ∗
T ≈ γ 2η2 df

dη
, (3.24)

and further downstream, i.e. R → 0, we can assume that ν̃T � 1, which results in
τ ∗
T ≈ τ ∗

s , i.e. (3.22). Thus, the shape of the non-dimensional Reynolds-stress profile τ ∗
T

changes from the shape given by (3.24) to (3.22) when the flow develops downstream.
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Using the shallow-wake approximations, the true initial conditions for both
Φw and Uc

w cannot be fulfilled simultaneously, since the constant product I0 =
−Ue

r (R)Uc
w(R)Φw(R) refers to a value downstream in the shallow wake that differs

from I1 at R = 1. The relative sensitivity of Φw to its initial value decreases
downstream, as is evident from (3.18). However, for a successful comparison of the
analysis with the experiments, it is crucial to account for these initial values in
the near field. Therefore, we present a procedure which is based on the similarity
functions of shallow wakes in which the corrections to Φw and Uc

w , which satisfy
the true initial conditions, are obtained by using the momentum integral analysis
presented above. This involves also the determination of the function I(R), which
is not assumed constant. The initial condition for the velocity defect is obviously
Uc

w(R = 1) = −Ue
r,1. Observe that this does not imply that we can prescribe an

initial condition for the detailed velocity profile. Let us define the wake initial width
Φ1(R = 1) = Φ1

w(R = 1)
√

Re, where the superscript ‘1’ denotes the distinction between
the first-order solution Φ1(R) and the zeroth-order solution Φ(R) as already given by
(3.18). With these initial conditions, we also have I(R = 1) = I1 = (Ue

r,1)
2Φ1

w(R = 1)
which concludes the set of required initial conditions.

The zeroth-order solution is obtained from the assumption that I = I0, where
I0 = −Ue

r U
c
wΦ/

√
Re. Thus

Uc
w(R)

Uc
w(R = 1)

=
I0

I1

Φ1(R = 1)

Φ(R)
R, (3.25)

which provides the solution to the velocity defect, where Ue
r,1/Ue

r = R. We still have
the freedom to specify the fictive initial condition for the zeroth-order solution, Φ1.
This value is chosen such that the initial condition for Uc

w is fulfilled. Then, since at
R = 1 the left-hand side of (3.25) is equal to unity, we find Φ1 = I0Φ

1(R = 1)/I1.
The value of I0 is unknown a priori but will be determined as part of the solution
for I(R) later. The first-order solution, Φ1(R), is obtained from the definition of
I(R) = −Ue

r U
c
wΦ1(R)/

√
Re. Therefore, we can show

I(R)

I1

=
Uc

w(R)Φ1(R)

RUc
w,1Φ

1(R = 1)
, (3.26)

which with (3.25) yields

Φ1(R) =
Φ(R)I(R)

I0

. (3.27)

Thus, since I(R) asymptotically approaches I0 downstream, the first-order solution
coincides with the zeroth-order solution there. Also, considering the first-order
solution for Φ1(R) together with the boundary condition for the zeroth-order solution
for Φ1, if I(R) satisfies its initial condition I(R = 1) = I1, so will Φ1 at R = 1.
It remains to obtain the function I(R). By substituting the similarity assumptions,
(3.10), into (3.7) and dividing by I1, we obtain

d[Ĩ(1 − RŨwF 2)]

dR
= ĨŨwF 2, (3.28)

where Ĩ = I/I1, Ũw = −Uc
w/Ue

r,1 and F 2 ≡
∫ ∞

0
f 2dη. The implicit solution to this

equation which satisfies the initial condition Ĩ(R = 1) = 1 is given by

Ĩ(R) =
1 − Ũw,1F

2 −
∫ 1

R
ĨŨwF 2dR

1 − RŨwF 2
, (3.29)
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Figure 4. The mean-velocity profiles of case III in self-similar coordinates compared to the
self-similar functions f0(η) (- - -) and f (η) (–).

where Ũw,1 = −Uc
w(R = 1)/Ue

r,1 = 1 denotes normalized velocity defect at the edge.

Considering (3.25), Ũw(R) is a known function, except for the ratio Ĩ0 = I0/I1

which comes out as a part of the solution. An explicit solution to (3.29) can be
obtained iteratively.

4. Results and discussion
We have summarized the experimental cases in table 1. In all cases Re = 160 × 103

which results in an acceleration factor K = 1/Re = 6.25 × 10−6. Figure 4 shows the
self-similar model functions f0 = e−πη2/4 and f , compared to the mean-velocity-defect
profiles of case III in the similarity coordinates. The free parameter, γ , of the second
model function, f , represents the magnitude of the primary turbulent-diffusivity
coefficient ξ̃T . The best fit to the experimental data was obtained when γ = π/3.8 and
α = 1.6, where the latter was determined by the normalization condition for f . With
these values of the parameters, f is narrower in the peak and wider at the tails than
f0 and, thereby, agrees better with the experiments. Comparing f0 and f for other
cases, we found that f , with the same values of γ = π/3.8 and α = 1.6, agrees better
with the mean-velocity-defect profiles in all of them. This particular velocity profile
appears to be a universal model function for the diverse range of initial conditions
considered at this Re. The good agreement between f and the experiments is due to
the additional Reynolds-stress term, accounting for the fluctuations similar to those
in wall-bounded flows, which influences the mean-velocity profile significantly.

The turbulent-diffusivity coefficient ν̃T is determined by fitting (3.22) to the total-
stress profiles at each measurement position. This is done such that the peak of the
total-stress profile, τ ∗

s , agrees with the peak of (3.22). The results are presented in
figure 5. The shortest plate, used with both blunt and tapered edges, generates the
largest overall level of ν̃T . This was expected, since the boundary layer at the edge
of the shortest plate is characterized by the lowest degree of relaminarization. For
this plate, ν̃T increases at a much larger rate with the downstream distance from the
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Figure 5. Downstream change of ν̃T (R). Fitted curves: arrows show cases I and II; case III
(- · -), IV (—) and V (- - -). Experiments: case I (∗), II (�), III (+), IV (×) and V (�).

trailing edge. In particular, this is more profound for the blunt edge, case I, which
rapidly reaches a state that can be classified as a fully developed turbulent case. For
tapered cases, the overall level of ν̃T gradually decreases with increasing plate length,
as a response to the increase in the degree of relaminarization of the boundary layer.
Apparently, the degree of relaminarization of the boundary layer at the edge can
influence the characteristics of the whole wake, since the overall growth rate of ν̃T

versus (1 − R) also decreases with increasing plate length. We have fitted curves to
ν̃T (R) to provide a rough analytical description of ν̃T in each case, using

ν̃T (R) = b + m(1 − R) + [A + B(1 − R)]R20. (4.1)

The last term on the right-hand side of (4.1) is non-zero only in case I, which accounts
for the rapid growth of ν̃T close to the edge. In case I, A = −35 and B = 100, and in
the other cases A = B = 0 which means that fitted ν̃T reduces to a line. The values
of b and m for all cases are presented in table 1.

Figure 6(a) shows profiles of Uw in case I compared with the model function f in
the similarity coordinates. The first measured profile downstream of the edge shows
traces of the two separated boundary layers at the blunt edge. The third measured
profile at R = 0.92 and the profiles downstream of this position agree fairly well
with f . Note that the effect of the edge shape is still present in the similarity-scaling
parameters. Scaled total-stress profiles, τ ∗

s , measured close to the edge also show traces
of the separated boundary layers, as shown in figure 6(b). Although the scatter is
larger here, a state fairly close to self-similar, τ ∗

s seems to appear at R � 0.85, which
can be compared to R � 0.92 for Uw . At |η| > 0.6 the agreement of τ ∗

s with (3.22)
is only qualitative. Scaled profiles of τ ∗

T are shown in figure 6(c). As it is clear from
figure 5, the increase of ν̃T (R) behind the blunt edge is quite rapid, which means
that the profiles of τ ∗

s and τ ∗
T are almost identical in this case, except in the first

measurement position downstream of the edge.
Scaled profiles of Uw in the tapered cases are shown in figure 7 in which for all

plate lengths, the profiles collapse into a single curve. To the accuracy that one can
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Figure 6. (a) Velocity profiles in similarity coordinates for case I and f (−). (b) Normalized
total shear stress in similarity coordinates and (1 + γ 2η2)df/dη (—). (c) Non-dimensional
Reynolds stress: (3.24) (—) and (3.22) (− − −).

infer from these profiles, this also includes the profiles immediately downstream of the
edge. The merging boundary layers at the edge of the tapered cases correspond to a
velocity defect which is qualitatively similar to f and differs from the velocity-defect
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Figure 7. Mean-velocity profiles in similarity coordinates for (a) case II, (b) III, (c) IV and
(d) case V.

profile corresponding to the case of separating boundary layers at a blunt edge. In
both figure 6 (blunt case) and figure 7 (tapered cases) γ = π/3.8 and α = 1.6, which
means that these parameters are universal for all cases at this Re. Since the agreement
of the wake-velocity defect with f is independent of upstream conditions, such as
the state of the relaminarization of the boundary layer at the edge and even the
initial wake velocity profile, f represents an equilibrium solution. In other words, the
effect of the initial conditions is only included in the scaling parameters (George &
Davidson 2004).

Figure 8 shows that the profiles of τ ∗
s in tapered cases nearly collapse into a single

curve, although it is far from conclusive for the velocity profiles. (The scatter in figure
8b represented by a few profiles will be discussed below.) The agreement with the
self-similar solution, [1+ (γ η)2]df/dη, is good only in the interval between the peaks.
However, a qualitative agreement holds for the entire range of η. Note that the scaling
procedure, which is based on fitting the peaks of the measured profiles to that of the
self-similar profile, also contributes to the good agreement for small |η|. Comparing
the results in figure 8 we find that the collapsing curves are not exactly the same in
all cases. In case II, figure 8(a), the peaks of the measured profiles generally appear
a little wider and closer to the analytical curve than the other cases. The differences
are small, however, and the collapsing curves of figure 8(b–d) seem to represent more
or less the same curve as shown in figure 9. Thus, we can conclude that for tapered
cases the total stress profiles represent, at least approximately, one single curve.
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Figure 8. Normalized total-stress profiles in similarity coordinates and (1 + γ 2η2)df/dη (−)
for (a) case II, (b) case III, (c) case IV and (d) case V; for symbols see figure 7.
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Figure 9. Total-stress profiles measured in cases II, III, IV and V except profiles at
0.8 � R � 0.9 in case III (·) and (3.22) (–).
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Figure 10. Non-dimensional Reynolds-stress profiles and the estimations based on (3.24) (—)
and (3.22) (- - -) for (a) case II, (b) case III, (c) case IV and (d) case V; for symbols see
figure 7.

Turning the attention to τ ∗
T , shown in figure 10, we find that these profiles do not

collapse into a single curve. Unlike the blunt case, in the tapered cases the increase
of the turbulence level towards a fully developed state is fairly slow. As shown in
figure 5, ν̃T in these cases is of the order of unity or less in a wide range of R. Thus,
when the laminar and turbulent stresses are of the same order of magnitude, the
self-similarity state is available for the total stress rather than for τ ∗

T . The changes
of the shape of measured τ ∗

T profiles appear to be consistent with the results of the
self-similarity analysis. As figure 10 shows the τ ∗

T profile changes from (3.24), valid at
small ν̃T and ξ̃T = γ 2, to (3.22), valid for large ν̃T and ξ̃T = γ 2ν̃T . For the shortest
plate, the degree of the relaminarization of the merging boundary layers at the edge
is lower than the other cases. This can be the reason behind the approach of τ ∗

T to a
nearly developed turbulent state far downstream. In this region, the measured profiles
almost collapse into a single curve. As shown by Narasimha & Sreenivasan (1973)
the relaminarization process is asymptotic, and thus the degree of relaminarization
at the trailing edge increases with plate length. Therefore, τ ∗

T in longer cases, figure
10(b–d), never reaches fully turbulent state, and profiles of τ ∗

T do not collapse into a
single curve. However, we do not exclude the possibility that they might collapse into
a single curve at positions farther downstream, which our existing experimental set-up
does not cover. Immediately downstream of the edge where ν̃T < 1, the qualitative
similarity of the measured profiles with (3.22) is clear, in particular, for small |η|.
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This seems to hold for the first profiles measured behind the edge for all plate
lengths.

A set of τ ∗
s profiles in figure 8(b), at R = 0.8, 0.86 and 0.9 of case III, do not

collapse into a single curve as the other profiles do. We conjecture that this is due
to a local, weak departure from equilibrium because of some fundamental instability
mechanisms in the wake, as e.g. inflectional instability of the velocity profile, or the
appearance of some coherent structures emanating from vortex-shedding mechanisms
at the edge. Further growth of the phenomenon appears to be bypassed by the rapid
recovery of the wake in sink flow, since there is a return to self-similarity downstream.
This appears to be nearly as fast as the approach to the self-similarity state behind the
blunt edge. Alternatively, the instability/vortex structure breaks down to become just
part of the overall-growing turbulence. Since the departure from the self-similarity
of the total stress is fairly weak, it appears that this phenomenon does not have
a considerable influence on the Uw profile shown in figure 7(b). Nevertheless, a
magnification of the scales in figure 7(b) displays small deviations from the other
profiles. Why does this departure from the self-similarity not appear in the other
cases? We believe that this phenomenon might also be present in cases IV and V,
although the effect is much weaker. Considering τ ∗

T profiles of case IV in figure 10(c),
at R = 0.92 and R = 0.87, a similar behaviour can be observed. The non-similar
profiles in case III are characterized by a negative peak in τ ∗

T at η < 0 and positive
peak at η > 0. This peak is present also in figure 10(c), at least at η < 0, but is
not as distinct as in figure 10(b). In case V the effect is presumably even weaker,
although the available measurement stations might not cover the region in which this
effect can be found. Neither are there any signs of such behaviour in the total-stress
profiles of case II. In this case, it is likely that the instability is bypassed by the overall
higher growth rate of the turbulence. Parsheh (2001) found that energy spectra of
the vertical velocity fluctuations in the tapered cases show the presence of regular
fluctuations with constant frequency throughout the wake. The relative magnitude
of this fluctuation energy, as compared to the entire energy of fluctuations, initially
increases but decreases further downstream. The blunt case shows a similar behaviour
close to the edge but at a much larger magnitude.

Figure 11(a, b) shows the evolution of measured I(R) and Uc
w(R), respectively.

Also, the evolution of δ∗(R) for cases I and II and for cases III–V are shown in
figures 11(c) and 11(d), respectively. These quantities are compared to their
corresponding analytical results, calculated based on the extended analysis using
the momentum integral analysis. The fitted curves to ν̃T , shown in figure 5, are used
as approximate analytical expressions in these analyses. Figure 11(a) shows that I(R)
decreases sharply near the plate edge and then becomes flat downstream. The length
scale of the region of rapid decay is caught fairly well by the analysis. In addition,
the flat region is predicted quite well. Figure 11(b) clearly shows a rapid recovery of
the wake velocity inside the contraction, where the fastest recovery occurs in the fully
turbulent case of a blunt edge. For the tapered edges and longer plates, the recovery
is slower. The analysis seems to catch the relative rates of recovery of different cases
fairly well. From figures 11(c)–(d) it is clear that the initial width of the wake in
case I, blunt edge, is much larger than in the other cases. This was expected, since
the wake width immediately downstream of the edge is the sum of the separating
boundary layers and the plate thickness. Since the development of ν̃T (R) in (3.18) is
dependent on the initial conditions, although here implemented empirically in (4.1),
the overall effect of changing the initial wake width remains even far downstream.
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We have also used the extended analysis to illustrate the separate sensitivity of the
evolution of wake half-width to the changes to its initial value, artificially keeping
ν̃T (R) the same, independent of the initial conditions. In figure 12, δ∗

b/δ
∗
a for cases I

and III are presented, where δ∗
a and δ∗

b are calculated using δ∗
1 and 1.5δ∗

1 as initial
values, respectively, and δ∗

1 is based on the experimental cases given in table 1. For
the blunt case, δ∗

b/δ
∗
a decreases sharply a short distance downstream of the edge and

asymptotically approaches unity. For the tapered case III, the evolution of δ∗
b/δ

∗
a is

relatively more sensitive to the magnitude of the initial value. It is also clear from
(3.18) that in the tapered cases the growth of Φ is slower, as the turbulent diffusivity
in such cases is much smaller than in the blunt case. The relative importance of
the initial value, Φ1, is sustained for larger distances downstream in the tapered
cases. It should be noted that any true physical change of the initial condition of
the wake width also changes the development of ν̃T (R), giving a different behaviour
also far downstream. This is quite clear when comparing cases I and II in which
the corresponding ratio of δ∗ certainly does not asymptotically approach unity using
the present empirical models of ν̃T . A complete asymptotic independence on the
initial condition would require that ν̃T (R) also approaches a universal behaviour
far downstream. Considering the trend of the experimental data in figure 5 it does
not seem very likely that it happens. However, we cannot completely exclude such
scenario, since, indeed, there is a lack of data in the region R < 0.5. Note also that the
general rule of asymptotic independence of initial conditions, suggested by Narasimha
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(1989), relates to turbulent flows. However, in our experiments only case I with a
blunt edge turned out to represent a fully turbulent flow. Therefore, our results do
not really contradict with this working rule in a strict sense. The working rule would
require ν̃T to be asymptotically independent of the initial conditions in different fully
developed flows, which is not considered here.

5. Conclusions
We studied the evolution of flat-plate wakes in sink flow both experimentally

and theoretically. The experiments were performed at Re =Q/2βν = 160 × 103,
corresponding to a Launder acceleration parameter K = 1/Re = 6.25 × 10−6, which
was much larger than the critical value required for the relaminarization of boundary
layers in favourable pressure gradients. In the theoretical analysis, we derived
equilibrium solutions for shallow wakes. It was found that the shape of the measured
velocity-defect profile in the shallow region is universal in all experiments covered
in this study and agrees well with the derived self-similar solution. This means that
the shape of the shallow-wake velocity-defect profile is independent of the imposed
initial conditions, such as the plate length and the type of the edge. A particular
feature of wakes in sink flow is the quite rapid development towards the shallow-
wake state. For tapered cases, it appeared that the shape of the scaled velocity-defect
profiles collapsed well into a single curve even at R = 0.99. Partly, this might be
an effect of the strong pressure gradient. In addition, the shape of the merging
boundary layers on opposite sides of the plate represents a velocity defect at the
edge which is not far from the wake itself. Nevertheless, the details of the Uw-profile
at the edge do not seem to directly influence the similarity solution downstream,
since the same shape appears in the blunt case, albeit at a relative position farther
downstream.

In case I, a blunt edge, a short distance downstream of the edge, the Reynolds-
stress profiles developed into a state that can be considered a fully developed turbulent
wake. In addition, the corresponding turbulent-diffusivity coefficient, on a logarithmic
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scale, appeared roughly independent of the downstream position. In the tapered cases,
the magnitude of the turbulent stress was much smaller than the blunt case, but the
relative growth rate was larger. In fact, in these cases the laminar and turbulent
stresses were of the same order of magnitude in the near-wake region. However, the
downstream growth rate of the turbulent-diffusivity coefficient decreased as the plate
length was increased. This could be attributed to the initial condition of the wake,
as influenced by the different degrees of relaminarization in the boundary layers at
the edge of different plate lengths. We also found that in the cases in which the
magnitude of the laminar and turbulent stresses are comparable, the existence of self-
similar solutions naturally requires that the total-stress profile becomes self-similar.
This means that the Reynolds-stress profile does not necessarily have a universal
shape which is also confirmed by the experiments. To reproduce this behaviour
in the theoretical model, the Reynolds-stress mixing-length model was required to
involve an additional term as compared to the standard procedure in wake flows.
This additional term uses a mixing length which is proportional to the distance from
the wake centreline rather than a mixing length just related to the wake width. This
approach not only enables us to demonstrate a non-universal shape of the Reynolds-
stress profile in the similarity solution but also provides a better agreement with the
measured velocity-defect profiles.

The additional contributing term to the Reynolds stress is typical for mixing-length
models in wall-bounded flows. When the plate is long, in the near-wake region of
the tapered edge, this term is the dominant contributor to the Reynolds shear stress
and is of the order of magnitude of the laminar stress. Thus, turbulent stresses are
present even in the very near-wake region which seems to be originating from the
relaminarized boundary layer as shown by Narasimha & Sreevivasan (1973, 1979) and
Talamelli et al. (2002). It is well known that this kind of low-level turbulent stresses
are too weak to influence the velocity profile of the boundary layer. However, the
wake, which has a different type of force balance at the centreline, is more susceptible
to such stresses. In fact, if this additional stress term is cancelled in the Reynolds-stress
model, the similarity profile of the velocity defect reduces to the traditional Gaussian
profile, which does not agree well with the experiments. As an alternative to this
hypothesis, we conjecture that there might be a local turbulent phenomenon around
the edge which generates this stress, such as pairwise, simultaneous vortex shedding
from the edge. Such a phenomenon would, however, be critically dependent on the
edge shape.

Unlike the self-similar functions obtained for the velocity-defect and total-stress
profiles which are universal, the magnitude of the velocity defect at the wake
centreline, Uc

w , the stress scale, νUc
w[1 + ν̃T (R)]/rΦw , and the wake angle, Φw , are

critically dependent on the initial conditions of the wake. In the model, the main
reason for this dependency is the empirically determined turbulent diffusivity which
develops differently for each flow case. Our primary analysis is based on the shallow-
wake property that I is a constant. However, since this constant, I0, differs from the
value of I at the trailing edge, it is not possible to relate the shallow-wake solution of
the integral properties to the actual initial conditions of the wake. This is a
considerable setback, since one cannot expect good agreement with the experiments
in the near-wake region. Instead, a good agreement could only be obtained farther
downstream. To overcome this problem we have developed an approximate solution
method, based on the momentum integral equation, which allows us to use the true
initial conditions of the integral properties of the wake. The only required inputs for
this model are then the initial conditions of the integral properties and the empirically
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determined scaling factor of the Reynolds stress, ν̃T , as a function of downstream
distance. We then found reasonable agreement with the experiments in the near-wake
region as well. The dependence on initial conditions of the measured wake angle and
the magnitudes of the corresponding turbulent-diffusivity coefficient and stress seems
to persist also far downstream of the edge, according to extrapolated trends of our
results towards R = 0. Thus, we do not observe any asymptotic independence of
initial conditions. However, we believe that such independence might appear only for
fully turbulent wakes. In our measurements only one set of the initial conditions, case
I, represents a fully turbulent case.

The experiments in this paper were sponsored by the PhD programme of
FaxénLaboratoriet and is part of the doctoral thesis of the first author. The authors
also wish to acknowledge the help of Dr Johan Westin, Mr Ulf Landén and Mr
Marcus Gällstedt.
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